Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(11): 4902-4914, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779111

RESUMO

In the field of neurodegenerative diseases, especially sporadic Parkinson's disease (sPD) with dementia (sPDD), the question of how the disease starts and spreads in the brain remains central. While prion-like proteins have been designated as a culprit, recent studies suggest the involvement of additional factors. We found that oxidative stress, damaged DNA binding, cytosolic DNA sensing, and Toll-Like Receptor (TLR)4/9 activation pathways are strongly associated with the sPDD transcriptome, which has dysregulated type I Interferon (IFN) signaling. In sPD patients, we confirmed deletions of mitochondrial (mt)DNA in the medial frontal gyrus, suggesting a potential role of damaged mtDNA in the disease pathophysiology. To explore its contribution to pathology, we used spontaneous models of sPDD caused by deletion of type I IFN signaling (Ifnb-/-/Ifnar-/- mice). We found that the lack of neuronal IFNß/IFNAR leads to oxidization, mutation, and deletion in mtDNA, which is subsequently released outside the neurons. Injecting damaged mtDNA into mouse brain induced PDD-like behavioral symptoms, including neuropsychiatric, motor, and cognitive impairments. Furthermore, it caused neurodegeneration in brain regions distant from the injection site, suggesting that damaged mtDNA triggers spread of PDD characteristics in an "infectious-like" manner. We also discovered that the mechanism through which damaged mtDNA causes pathology in healthy neurons is independent of Cyclic GMP-AMP synthase and IFNß/IFNAR, but rather involves the dual activation of TLR9/4 pathways, resulting in increased oxidative stress and neuronal cell death, respectively. Our proteomic analysis of extracellular vesicles containing damaged mtDNA identified the TLR4 activator, Ribosomal Protein S3 as a key protein involved in recognizing and extruding damaged mtDNA. These findings might shed light on new molecular pathways through which damaged mtDNA initiates and spreads PD-like disease, potentially opening new avenues for therapeutic interventions or disease monitoring.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Humanos , Camundongos , Animais , DNA Mitocondrial/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteômica , Mitocôndrias/metabolismo , Neurônios/metabolismo
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614311

RESUMO

3-hydroxybutyrate (3OHB) has been proved to act as a neuroprotective molecule in multiple neurodegenerative diseases. Here, we employed a quantitative proteomics approach to assess the changes of the global protein expression pattern of neural cells upon 3OHB administration. In combination with a disease-related, protein-protein interaction network we pinpointed a hub marker, histone lysine 27 trimethylation, which is one of the key epigenetic markers in multiple neurodegenerative diseases. Integrative analysis of transcriptomic and epigenomic datasets highlighted the involvement of bivalent transcription factors in 3OHB-mediated disease protection and its alteration of neuronal development processes. Transcriptomic profiling revealed that 3OHB impaired the fate decision process of neural precursor cells by repressing differentiation and promoting proliferation. Our study provides a new mechanism of 3OHB's neuroprotective effect, in which chromatin bivalency is sensitive to 3OHB alteration and drives its neuroprotective function both in neurodegenerative diseases and in neural development processes.


Assuntos
Células-Tronco Neurais , Fármacos Neuroprotetores , Cromatina/genética , Ácido 3-Hidroxibutírico , Proteoma , Fármacos Neuroprotetores/farmacologia , Hidroxibutiratos
3.
Front Mol Neurosci ; 15: 860275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465089

RESUMO

Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction. However, it remains to be determined whether and how alterations in the excitatory/inhibitory (E/I) balance contribute to VPA-induced ASD in a mouse model. In the present study, we explored changes in the E/I balance during different developmental periods in a VPA mouse model. We found that typical markers of pre- and postsynaptic excitatory and inhibitory function involved in E/I balance markedly decreased during development, reflecting difficulties in the development of synaptic plasticity in VPA-exposed mice. The expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the formation and maturation of glutamatergic and GABAergic synapses during postnatal development, was severely reduced in the VPA-exposed group. Treatment with exogenous BDNF during the critical E/I imbalance period rescued synaptic functions and autism-like behaviors, such as social defects. With these results, we experimentally showed that social dysfunction in the VPA mouse model of autism might be caused by E/I imbalance stemming from BDNF deficits during the developmental stage.

4.
iScience ; 25(3): 103966, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35281735

RESUMO

The bioeffects of terahertz (THz) radiation received growing attention because of its influence on the interactions between biomolecules. Our work aimed to investigate the effects of THz irradiation on cell membrane, especially cell membrane permeability. We found that 0.1 THz irradiation promoted the endocytosis of FM4-64-labeled cells and the inhibition of dynamin attenuated but did not fully abolish the THz promoted endocytosis. Moreover, 0.1 THz irradiation also promoted the transmembrane of the rhodamine, as well as the chemical compounds GDC0941 and H89, evidenced by the confocal microscope observation and the western blotting analysis, respectively. These findings demonstrated 0.1 THz irradiation facilitated the transmembrane transport of small molecules by promoting both the cellular endocytosis and the diffusion process. Our study provided direct evidence that THz could affect the cell membrane permeability, broadened the THz affected cellular physiological processes, and implied its potential application in regulating the cell membrane functions.

5.
Biomed Opt Express ; 12(6): 3729-3742, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221691

RESUMO

In recent years, many studies have been conducted to investigate the influence of terahertz (THz) radiation on the gene expression in various cell types, but the underling molecular mechanism has not yet been fully revealed. In this study, we explored the effects of 0.1 THz radiation on the gene expression in primary neuron cells through RNA-seq analysis. 111 up-regulated and 54 down-regulated genes were identified. Several biomolecule binding related categories such as "long-chain fatty acid binding", "tropomyosin binding", "BMP receptor binding", as well as "GTPase binding" and "phospholipid binding" were enriched by GO analysis. Moreover, the GSEA analysis indicated that genes encoding protein biosynthetic machinery ribosome were up-regulated by 0.1 THz irradiation. In addition, we demonstrated that the binding efficiency of a transcription factor (TF) AP-1 with its transcription factor binding site (TFBS) in DNA was reduced by THz irradiation, which suggested that THz irradiation might affect the interaction between TFs with DNA and consequently regulate the gene expression. Our results provide new insights into the biological effects of terahertz irradiation.

6.
Mol Psychiatry ; 26(10): 6083-6099, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34234281

RESUMO

Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNß or IFNAR1, the receptor for IFNα/ß, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNß-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNß-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNß-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.


Assuntos
Demência , Interferon beta/metabolismo , Doença de Parkinson , Proteínas Inibidoras de STAT Ativados , Transdução de Sinais , Animais , Demência/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural , Doença de Parkinson/genética , Proteínas Inibidoras de STAT Ativados/genética , alfa-Sinucleína/metabolismo
7.
Front Neurosci ; 14: 591177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192276

RESUMO

Neurological evidence suggests that beta-hydroxybutyrate (BHBA) has positive effects on the central nervous system. Previous studies have explored the molecular mechanisms by which BHBA affects different brain functions, but the effects of BHBA on epigenetic modifications remain elusive. Here, we showed that BHBA enhanced brain-derived neurotrophic factor (BDNF) expression by increasing H3K4me3 and decreasing H2AK119ub occupancy at the Bdnf promoters I, II, IV, and VI in hippocampal neurons. Moreover, BHBA treatment induced the upregulation of H3K4me3 and downregulation of H2AK119ub on the global level, both of which were dependent on the L-type calcium channel. Additionally, the BHBA-activated L-type calcium channel subsequently triggered the activation of Ca2+/CaMKII/CREB signaling, and promoted the binding of p-CREB and CBP to Bdnf promoters. These results indicate that BHBA regulates cellular signaling and multiple histone modifications to cooperatively modulate BDNF, suggesting a wide range of regulatory effects of BHBA in the central nervous system.

8.
Biomed Opt Express ; 11(7): 3890-3899, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014573

RESUMO

In recent years, many studies have been conducted to investigate the non-thermal effects of THz radiation on different organisms, but further studies are needed to fully elucidate the effects, especially on the molecular level. In this study, we explored the effects of at 3.1 THz radiation on protein expression in Escherichia coli (E. coli) using red fluorescent protein as a reporter molecule. After 8 hours of continuous THz irradiation of bacteria on LB (Luria-Bertani) solid plates at an average power of 33 mW/cm2 and 10 Hz pulse repetition frequency, we found that the plasmid copy number, protein expression and fluorescence intensity of bacteria from the irradiated area were 3.8-, 2.7-, and 3.3 times higher than in bacteria from the un-irradiated area, respectively. These findings suggest that plasmid replication changed significantly in bacteria exposed to 3.1 THz radiation, resulting in increased protein expression as evidenced by increased fluorescence intensity of the RFP reporter.

9.
Neuroscience ; 415: 107-120, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31195053

RESUMO

The intense and prolonged inflammatory response after ischemic stroke significantly contributes to the secondary neural injury. PI3Kγ, which is involved in the regulation of vascular permeability, chemotactic leukocyte migration and microglia activation, is a key target for intervention in the inflammatory response. In this study, we identified the protective effect of the PI3Kγ inhibitor AS605240 against stroke-related injury in the mouse model of transient intraluminal middle cerebral artery occlusion (tMCAO). The results showed that administration of AS605240 could improve the neurological function score, reduce the infarct size and decrease astrocyte activation in the tMCAO mice after injury. The inhibitory effect of AS605240 on microglia activation is relatively clear. Therefore, in this study, the effects of AS605240 on astrocytes were studied in cell cultures. IL-6 and its soluble receptor were used to construct the astrocyte activation model. AS605240 treatment significantly reduced the astrocyte activation markers and the morphological changes of cells. We also identified 13 inflammatory factors whose expression was significantly upregulated by IL-6/sIL-6R and significantly inhibited by AS605240 at the protein level, and seven of those factors were verified at the mRNA level. These results indicated that specific inhibition of PI3Kγ could reduce astrocyte activation induced by inflammation, which might aid the repair and remodeling of neurons in the later stage after ischemic stroke.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Quinoxalinas/farmacologia , Tiazolidinedionas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Quinase Induzida por NF-kappaB
10.
Neuroscience ; 386: 315-325, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29966721

RESUMO

Neurobiological evidence suggests that the ketone metabolite ß-hydroxybutyrate (BHBA) exerts many neuroprotective functions for the brain. The previous study revealed that BHBA could promote the expression of brain-derived neurotrophic factor (BDNF) at glucose inadequate condition. Here we demonstrated that BHBA administration induced the expression of BDNF in the hippocampus of mice fed with normal diet. In vitro experiment results also showed that 0.02-2 mM BHBA significantly increased BDNF expression in both the primary hippocampal neurons and the hippocampus neuron cell line HT22 under adequate glucose supply. Bdnf transcription induced by BHBA stimulus was mediated through the cAMP/PKA-triggered phosphorylation of CREB (S133) and the subsequent up-regulation of histone H3 Lysine 27 acetylation (H3K27ac) binding at Bdnf promoters I, II, IV, and VI. Moreover, BHBA stimulus induced a decrease in tri-methylation of H3K27 (H3K27me3) binding at the Bdnf promoters II and VI and the elevation of H3K27me3-specific demethylase JMJD3, which also contributed to the activation of Bdnf transcription. These results demonstrated that BHBA within the physiological range could promote BDNF expression in neurons via a novel signaling function. Moreover, BHBA might possess more broad epigenetic regulatory activities, which affected both the acetylation and demethylation of H3K27. Our findings reinforce the beneficial effect of BHBA on the central nervous system (CNS) and suggest that BHBA administration with no need for energy restriction might also be a promising intervention to improve the neuronal activity and ameliorate the degeneration of CNS.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Glucose/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos
11.
FEBS Lett ; 589(24 Pt B): 3899-907, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26555189

RESUMO

Mesenchymal stem cells (MSCs) possess the ability to modulate the immune response, and their abnormalities are related to several diseases. We previously reported that miR-30a expression significantly increased in the maternal-fetal interface during preeclampsia (PE), but the effects of miR-30a on the immunoregulatory characteristics of MSCs are unclear. In this study, we determined that miR-30a over-expression inhibited the IL-1ß-elicited activation of the nuclear factor κB (NF-κB) and JNK signaling pathways and the production of IL-6, cyclooxygenase 2 (COX2) and IL-8 by targeting transforming growth factor-ß-activated kinase 1 binding protein 3 (TAB3) in MSCs. Moreover, the over-expression of miR-30a also impaired MSCs' anti-inflammatory effects on macrophages. These data demonstrated that miR-30a in MSCs may participate in the immune dysregulation of the maternal-fetal interface during PE.


Assuntos
Tolerância Imunológica/genética , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo-Oxigenase 2/biossíntese , Feminino , Humanos , Tolerância Imunológica/efeitos dos fármacos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cordão Umbilical/metabolismo , Regulação para Cima
12.
Eur J Immunol ; 45(7): 1934-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25929465

RESUMO

B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells.


Assuntos
Antígenos CD1d/biossíntese , Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , MicroRNAs/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD1d/imunologia , Western Blotting , Técnicas de Cocultura , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Células T Matadoras Naturais/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor Toll-Like 9/imunologia , Transfecção
13.
Tumour Biol ; 36(4): 2523-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25613064

RESUMO

Although interleukin (IL) 17A can promote angiogenesis in several tumors, there are limited clinical evidences on cancer about the correlation between serum vascular endothelial growth factor (VEGF) and IL-17F, which is the most homologous to IL-17A. In this study, serum concentration of IL-17F and VEGF from healthy (n = 28), leukoplakia (n = 15), and oral squamous cell carcinoma (OSCC) groups (n = 85) were assessed and showed that IL-17F level was remarkably downregulated from healthy group (394.3 pg/ml) to OSCC group (82.96 pg/ml). Conversely, the OSCC group had a highest level of VEGF (P < 0.05) in whole groups, and there was a negative correlation between IL-17F and VEGF in serum or in the peripheral blood mononuclear cells (PBMCs) at mRNA level. Moreover, the lowest ratio of IL-17F/VEGF was found in OSCC patients (P < 0.05) and lower ratio of IL-17F/VEGF correlated to higher tumor stage and lymph node metastasis. Furthermore, the serum level of IL-17F and the ratio of IL-17F/VEGF were positively associated with the numbers of CD3(+) CD4(+) T cells, which indicated that serum IL-17F could originate from PBMCs during the development of OSCC, and could be used for the diagnosis by effectively distinguishing OSCC patients from healthy individuals.


Assuntos
Carcinoma de Células Escamosas/sangue , Interleucina-17/sangue , Neoplasias Bucais/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Idoso , Biomarcadores Tumorais/sangue , Linfócitos T CD4-Positivos/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Neovascularização Patológica/sangue , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/patologia , Prognóstico
14.
Tumour Biol ; 35(10): 10539-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25060177

RESUMO

Monocyte chemotactic protein-1 (MCP-1/CCL2) and macrophage inflammatory protein-1α (MIP-1α/CCL3) are small chemotactic proteins that have been found in several kinds of tumor tissue samples and function as key regulators of cancer progression. However, the expression of CCL2 and CCL3 in serum samples of oral squamous cell carcinoma (OSCC) patients remains unknown. This study aimed to investigate the prognostic meaning of serum CCL2 and CCL3 in OSCC. The concentration of CCL2 and CCL3 was assessed by ELISA in serum of OSCC patients (n = 98), leukoplakia patients (n = 14), and healthy donors (n = 27). The results showed that the concentration of CCL2 in the OSCC group was significantly lower compared to that in the healthy controls (67.81 vs. 108.1 pg/ml, P < 0.0001). The CCL3 concentration was higher in leukoplakia patients than in OSCC patients and healthy donors (201.9 vs. 153.9 or 118.3 pg/ml, P < 0.05). No significant difference in CCL3 concentration was observed between OSCC patients and healthy donors. However, the OSCC group clearly presented two subclusters, i.e., CCL3 (LOW) and CCL3 (HIGH) OSCC subclusters, in which the serum level of CCL3 was positively related to the tumor size. Interestingly, the ratio of CCL2/CCL3 in OSCC patients was correlated to TNM (tumor, node, metastasis), smoking habits, and differentiation. The receiver operating characteristic (ROC) curve suggests that serum CCL2 is a good diagnostic marker to discriminate OSCC patients from healthy people (cutoff value, 101.1 pg/ml) and the ratio of CCL2/CCL3 also is a good diagnostic marker to discriminate leukoplakia patients and CCL3 (HIGH) OSCC patients from healthy people (cutoff values, 1.080 and 0.424, respectively). These results indicate that CCL2 and CCL3 are associated with progression of OSCC and may be potential biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/diagnóstico , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Neoplasias Bucais/diagnóstico , Adulto , Idoso , Carcinoma de Células Escamosas/sangue , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/sangue
15.
Br J Pharmacol ; 171(21): 4866-78, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24903157

RESUMO

BACKGROUND AND PURPOSE: Sepsis is a clinical condition characterized by overwhelming systemic inflammation with high mortality rate and high prevalence, but effective treatment is still lacking. Toll-like receptor 3 (TLR3) is an endogenous sensor, thought to regulate the amplification of immune response during sepsis. Modulators of TLR3 have an advantage in the treatment of sepsis. Here, we aimed to explore the mechanism of a monosubstituted 1,2-benzenediamine derivative FC-99 {N(1) -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine}on modulating TLR3 expression and its therapeutic potential on mouse model of sepsis. EXPERIMENTAL APPROACH: Cells were pretreated with FC-99 followed by poly(I:C) or IFN-α stimulation; TLR3 and other indicators were assayed. Female C57BL/6 mice were subjected to sham or caecal ligation puncture (CLP) surgery after i.p. injection of vehicle or FC-99; serum and tissues were collected for further experiments. KEY RESULTS: FC-99 suppressed inflammatory response induced by poly(I:C) with no effect on cell viability or uptake of poly(I:C). FC-99 also inhibited TLR3 expression induced by not only poly(I:C) but also by exogenous IFN-α. This inhibition of FC-99 was related to the poly(I:C)-evoked IRF3/IFN-α/JAK/STAT1 signalling pathway. In CLP-induced model of sepsis, FC-99 administration decreased mice mortality and serum levels of inflammatory factors, attenuated multiple organ dysfunction and enhanced bacterial clearance. Accordingly, systemic and local expression of TLR3 was reduced by FC-99 in vivo. CONCLUSION AND IMPLICATIONS: FC-99 reversed TLR3 expression and ameliorate CLP-induced sepsis in mice. Thus, FC-99 will be a potential therapeutic candidate for sepsis.


Assuntos
Alcanossulfonatos/farmacologia , Alcanossulfonatos/uso terapêutico , Fluorocarbonos/farmacologia , Fluorocarbonos/uso terapêutico , Sepse/tratamento farmacológico , Receptor 3 Toll-Like/genética , Animais , Ceco/cirurgia , Linhagem Celular , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Ligadura , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Sepse/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...